E nehenehe e faaohipa i te mau tao'a aluminum foil e nehenehe e faaohipahia i roto i te mau tao'a e vai ra i roto i te mau tao'a?

E nehenehe e faaohipa i te mau tao'a aluminum foil e nehenehe e faaohipahia i roto i te mau tao'a e vai ra i roto i te mau tao'a?

E tuhaa faufaa roa ta te Aluminum foil i roto i te paturaa i te mau mori purapura. E rave rahi hi'oraa i roto i te 1000-8000 anairaa o te mau tao'a e nehenehe e faaohipahia i roto i te hamaniraa i te mau ofai pupuhi.

Te mau mana'o tauturu no te haapiiraa: I roto i te mau tao'a e faaohipa - pinepine - hia nei i roto i te mau tao'a e vai ra i roto i te mau mori uira, te vai ra e rave rau mau nota mai te 1060, 1050, 1145, e 1235.
I te rahiraa o te taime, tei roto teie mau vahi i te mau hau taa ê mai te O, H14, H18, H24, H22.

Te mau mana'o taa ê 1145. The alloy is known for its high electrical conductivity, low impurity content and good formability, making it suitable for use as a current collector in batteries.

Other aluminum alloys that can be used in battery applications include the 3xxx series of alloys, mai te 3003 e 3104, which offer a balance of strength and formability. Te tahi atu â mau mea, some battery manufacturers may use 8xxx series alloys to meet specific performance requirements.

Aluminum-silicon alloy foil: Aluminum foil containing silicon alloy is a promising anode material for next-generation lithium-ion batteries. They offer a balance between low cost, environmental friendliness and high performance.

Researchers found that aluminum foil anodes exhibit higher performance and stability in solid-state batteries compared to traditional lithium-ion batteries. I ni'a i te mau mea, the selection of aluminum alloys for battery applications depends on factors such as conductivity, Te mau nota, strength and cost considerations.